THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5510 Foundation of Advanced Mathematics 2017-2018 Suggested Solution to Assignment 2

1. Let $x_1, x_2 \in [0, \infty)$ such that $f(x_1) = f(x_2)$. Then,

$$f(x_1) = f(x_2)$$
$$x_1^2 = x_2^2$$
$$(x_1 - x_2)(x_1 + x_2) = 0$$

We have $x_1 - x_2 = 0$ or $x_1 + x_2 = 0$. For the first case, clearly we have $x_1 = x_2$; for the second case, since $x_1, x_2 \ge 0$, it can only be $x_1 = x_2 = 0$. In both cases, we have $x_1 = x_2$, and so f is injective.

If we take $y = -1 \in \mathbb{R}$, there exists no $x \in [0, \infty)$ such that $f(x) = x^2 = -1 = y$. Therefore, f is not surjective.

2. Let $x_1, x_2 \in A$ such that $(g \circ f)(x_1) = (g \circ f)(x_2)$, i.e. $g(f(x_1)) = g(f(x_2))$. Since g is injective, $f(x_1) = f(x_2)$. Then, since f is injective, $x_1 = x_2$. Therefore $g \circ f$ is injective.

Let $y \in C$. Since g is surjective, there exists $w \in B$ such that g(w) = y.

Also, since f is surjective, there exists $x \in A$ such that f(x) = w.

Then, we have $(g \circ f)(x) = g(f(x)) = g(w) = y$ and so $g \circ f$ is surjective.

3. Let $y \in \mathbb{R}$. Take a = -(1 + |y|) and b = 1 + |y|.

Note that $b^3 = 1 + 3|y| + 3|y|^2 + |y|^3 > 1 + |y| > y$ and $a^3 = -1 - 3|y| - 3|y|^2 - |y|^3 < -1 - |y| < y$. Therefore, we have a < b and f(a) < y < f(b).

By using the intermediate value theorem, there exists $c \in (a, b)$ such that f(c) = y.

- 4. $2 + 3 = 2 + 2^{+} = (2 + 2)^{+} = (2 + 1^{+})^{+} = ((2 + 1)^{+})^{+} = ((2 + 0^{+})^{+})^{+} = (((2 + 0)^{+})^{+})^{+} = ((2^{+})^{+})^{+} = (3^{+})^{+} = 4^{+} = 5$
- 5. (a) When m = 0, $0 \times m = 0 \times 0 = 0$. Assume that $0 \times m = 0$ for $m \in \mathbb{N}$. Then,

$$0 \times m^+ = 0 \times m + 0 = 0 + 0 = 0.$$

By mathematical induction, we have $0 \times m = 0$ for all $m \in \mathbb{N}$.

(b) When $m = 0, 1 \times m = 1 \times 0 = 0$. Also, $m \times 1 = 0 \times 1 = 0 \times 0^+ = 0 \times 0 + 0 = 0 + 0 = 0$. Therefore, $1 \times 0 = 0 \times 1 = 0$. Assume that $1 \times m = m \times 1 = m$ for $m \in \mathbb{N}$. Then,

$$1 \times m^+ = 1 \times m + 1 = m + 1 = m^+.$$

(Remark: It should be already known that $m + 1 = m + 0^+ = (m + 0)^+ = m^+$.)

 $m^+ \times 1 = m^+ \times 0^+ = m^+ \times 0 + m^+ = 0 + m^+$

Therefore, $1 \times m^+ = m^+ \times 1 = m^+$. By mathematical induction, we have $1 \times m = m \times 1 = m$ for all $m \in \mathbb{N}$.

(c) When n = 0, $m^+ \times n = m^+ \times 0 = 0$ and $m \times n + n = m \times 0 + 0 = 0$. Assume that for a particular $n \in \mathbb{N}$, we have $m^+ \times n = m \times n + n$ for all $m \in \mathbb{N}$. Then, for all $m \in \mathbb{N}$, $m^+ \times n^+ = m^+ \times n + m^+ = (m \times n + n) + m^+ = m \times n + (n + m^+) = m \times n + (m + n^+) = (m \times n + m) + n^+$

(Remark:
$$n + m^+ = (n + m)^+ = (m + n)^+ = m + n^+$$
)

By mathematical induction, we have $m^+ \times n = m \times n + n$ for all $m, n \in \mathbb{N}$.

(d) When m = 0, it is already known that $m \times 0 = 0 \times m = 0$ for all $m \in \mathbb{N}$. Assume that for a particular $n \in \mathbb{N}$, we have $m \times n = n \times m$ for $m \in \mathbb{N}$. Then, for all $m \in \mathbb{N}$,

$$m^+ \times n = m \times n + n = n \times m + n = n \times m^+$$

By mathematical induction, we have $m \times n = n \times m$ for all $m, n \in \mathbb{N}$.

(e) When p = 0, $m \times (n+p) = m \times (n+0) = m \times n = m \times n$ and $m \times n + m \times p = m \times n + m \times 0 = m \times n$. Assume that for a particular $p \in \mathbb{N}$, we have $m \times (n+p) = m \times n + m \times p$ for all $m, n \in \mathbb{N}$. Then, for all $m, n \in \mathbb{N}$,

 $m \times (n + p^{+}) = m \times (n^{+} + p) = m \times n^{+} + m \times p = (m \times n + m) + m \times p = m \times n + (m + m \times p)$ = m \times n + (m \times p + m) = m \times n + m \times p^{+}

(Remark: $n + p^+ = (n + p)^+ = (p + n)^+ = p + n^+ = n^+ + p$.) By mathematical induction, we have $m \times (n + p) = m \times n + m \times p$ for all $m, n, p \in \mathbb{N}$.

(f) When p = 0, $(m \times n) \times p = (m \times n) = 0$ and $m \times (n \times p) = m \times (n \times 0) = m \times 0 = 0$. Assume that for a particular $p \in \mathbb{N}$, we have $(m \times n) \times p = m \times (n \times p)$ for all $m, n \in \mathbb{N}$. Then, for all $m, n \in \mathbb{N}$,

$$(m \times n) \times p^{+} = (m \times n) \times (p+1) = (m \times n) \times p + (m \times n) \times 1 = m \times (n \times p) + m \times m$$
$$= m \times (n \times p + n) = m \times (n \times p + n \times 1) = m \times (n \times (p+1)) = m \times (n \times p^{+})$$

(Remark: $p^+ = (p+0)^+ = p + 0^+ = p + 1.$)

By mathematical induction, we have $(m \times n) \times p = m \times (n \times p)$ for all $m, n, p \in \mathbb{N}$.

6. Suppose that there exists natural numbers n and m such that $n < m < n^+$, i.e. n < m and $m < n^+$.

Note that $m < n^+$, so $m \in n^+ = n \cup \{n\}$. Therefore, there are only two possible cases:

Case 1: $m \in n$, then it implies m < n which contradicts to the fact that n < m.

Case 2: $m \in \{n\}$, then m = n which again contradicts to the fact that n < m.

Therefore, both cases lead contradiction.

- 7. (a) Recall the fact that for any natural numbers m and n,
 - $m < n^+$ if and only if $m \le n$,
 - $m^+ \leq n$ if and only if m < n.

(Please refer to theorem 6.6 of The Elementary Set Theory for the statement as well as the proof.)

Then, we have m < n if and only if $m^+ \leq n$ (second statement),

if and only if $m^+ < n^+$ (first statement but replacing m by m^+).

(b) When p = 0, it's trivial. Assume that for a particular $p \in \mathbb{N}$, we have m < n if and only if m + p < n + p for all $m, n \in \mathbb{N}$.

Then, for all $m, n \in \mathbb{N}$,

 $m < n \iff m + p < n + p$ (Induction assumption) $\Leftrightarrow m + p^+ = (m + p) + < (n + p)^+ = n + p^+$ (By (a))

By mathematical induction, we have m < n if and only if m + p < n + p for all $m, n, p \in \mathbb{N}$.

8. When p = 1, it's trivial.

Assume that for a particular $p \in \mathbb{N}$, we have m < n if and only if mp < np for all $m, n \in \mathbb{N}$. Then, for all $m, n \in \mathbb{N}$:

- if m < n, then by induction assumption, we have mp < np and so $mp^+ = mp + m < np + m$. On the other hand, we have m < n, so $np + m = m + np < n + np = np + n = np^+$. Therefore, we have $mp^+ < np^+$.
- if $mp^+ < np^+$, we are going to prove that m < n by contradiction.

Suppose the contrary and we have $n \le m$. Then, $mp + m = mp^+ < np^+ = np + n \le np + m$. Therefore by the previous question, we have mp < np which implies m < n which is a contradiction.

(Remark: From the previous question, the contrapositive of the statement in (a) gives $m \le n$ if and only if $m^+ \le n^+$. By using mathematical induction like (b), we have $m \le n$ if and only if $m + p \le n + p$ for all $m, n, p \in \mathbb{N}$.)

Therefore, m < n if and only if $m + p^+ \le n + p^+$ for all $m, n \in \mathbb{N}$. By mathematical induction, we have m < n if and only if mp < np for all $m, n, p \in \mathbb{N}$.