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1. Let x1, x2 ∈ [0,∞) such that f(x1) = f(x2). Then,

f(x1) = f(x2)

x2
1 = x2

2

(x1 − x2)(x1 + x2) = 0

We have x1 − x2 = 0 or x1 + x2 = 0. For the first case, clearly we have x1 = x2; for the second

case, since x1, x2 ≥ 0, it can only be x1 = x2 = 0. In both cases, we have x1 = x2, and so f is

injective.

If we take y = −1 ∈ R, there exists no x ∈ [0,∞) such that f(x) = x2 = −1 = y. Therefore, f is

not surjective.

2. Let x1, x2 ∈ A such that (g ◦ f)(x1) = (g ◦ f)(x2), i.e. g(f(x1)) = g(f(x2)).

Since g is injective, f(x1) = f(x2). Then, since f is injective, x1 = x2.

Therefore g ◦ f is injective.

Let y ∈ C. Since g is surjective, there exists w ∈ B such that g(w) = y.

Also, since f is surjective, there exists x ∈ A such that f(x) = w.

Then, we have (g ◦ f)(x) = g(f(x)) = g(w) = y and so g ◦ f is surjective.

3. Let y ∈ R. Take a = −(1 + |y|) and b = 1 + |y|.

Note that b3 = 1 + 3|y|+ 3|y|2 + |y|3 > 1 + |y| > y and a3 = −1− 3|y| − 3|y|2− |y|3 < −1− |y| < y.

Therefore, we have a < b and f(a) < y < f(b).

By using the intermediate value theorem, there exists c ∈ (a, b) such that f(c) = y.

4. 2 + 3 = 2 + 2+ = (2 + 2)+ = (2 + 1+)+ = ((2 + 1)+)+ = ((2 + 0+)+)+ = (((2 + 0)+)+)+ =

((2+)+)+ = (3+)+ = 4+ = 5

5. (a) When m = 0, 0×m = 0× 0 = 0.

Assume that 0×m = 0 for m ∈ N. Then,

0×m+ = 0×m + 0 = 0 + 0 = 0.

By mathematical induction, we have 0×m = 0 for all m ∈ N.

(b) When m = 0, 1×m = 1× 0 = 0.

Also, m× 1 = 0× 1 = 0× 0+ = 0× 0 + 0 = 0 + 0 = 0.

Therefore, 1× 0 = 0× 1 = 0.

Assume that 1×m = m× 1 = m for m ∈ N. Then,

1×m+ = 1×m + 1 = m + 1 = m+.
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(Remark: It should be already known that m + 1 = m + 0+ = (m + 0)+ = m+.)

m+ × 1 = m+ × 0+ = m+ × 0 + m+ = 0 + m+

Therefore, 1×m+ = m+× 1 = m+. By mathematical induction, we have 1×m = m× 1 = m

for all m ∈ N.

(c) When n = 0, m+ × n = m+ × 0 = 0 and m× n + n = m× 0 + 0 = 0.

Assume that for a particular n ∈ N, we have m+ × n = m× n + n for all m ∈ N.

Then, for all m ∈ N,

m+×n+ = m+×n+m+ = (m×n+n)+m+ = m×n+(n+m+) = m×n+(m+n+) = (m×n+m)+n+

(Remark: n + m+ = (n + m)+ = (m + n)+ = m + n+)

By mathematical induction, we have m+ × n = m× n + n for all m,n ∈ N.

(d) When m = 0, it is already known that m× 0 = 0×m = 0 for all m ∈ N.

Assume that for a particular n ∈ N, we have m× n = n×m for m ∈ N.

Then, for all m ∈ N,

m+ × n = m× n + n = n×m + n = n×m+

By mathematical induction, we have m× n = n×m for all m,n ∈ N.

(e) When p = 0, m×(n+p) = m×(n+0) = m×n = m×n and m×n+m×p = m×n+m×0 = m×n.

Assume that for a particular p ∈ N, we have m× (n + p) = m× n + m× p for all m,n ∈ N.

Then, for all m,n ∈ N,

m× (n + p+) = m× (n+ + p) = m× n+ + m× p = (m× n + m) + m× p = m× n + (m + m× p)

= m× n + (m× p + m) = m× n + m× p+

(Remark: n + p+ = (n + p)+ = (p + n)+ = p + n+ = n+ + p.)

By mathematical induction, we have m× (n + p) = m× n + m× p for all m,n, p ∈ N.

(f) When p = 0, (m× n)× p = (m× n) = 0 and m× (n× p) = m× (n× 0) = m× 0 = 0.

Assume that for a particular p ∈ N, we have (m× n)× p = m× (n× p) for all m,n ∈ N.

Then, for all m,n ∈ N,

(m× n)× p+ = (m× n)× (p + 1) = (m× n)× p + (m× n)× 1 = m× (n× p) + m× n

= m× (n× p + n) = m× (n× p + n× 1) = m× (n× (p + 1)) = m× (n× p+)

(Remark: p+ = (p + 0)+ = p + 0+ = p + 1.)

By mathematical induction, we have (m× n)× p = m× (n× p) for all m,n, p ∈ N.

6. Suppose that there exists natural numbers n and m such that n < m < n+, i.e. n < m and

m < n+.

Note that m < n+, so m ∈ n+ = n ∪ {n}. Therefore, there are only two possible cases:

Case 1: m ∈ n, then it implies m < n which contradicts to the fact that n < m.

Case 2: m ∈ {n}, then m = n which again contradicts to the fact that n < m.

Therefore, both cases lead contradiction.
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7. (a) Recall the fact that for any natural numbers m and n,

• m < n+ if and only if m ≤ n,

• m+ ≤ n if and only if m < n.

(Please refer to theorem 6.6 of The Elementary Set Theory for the statement as well as the

proof.)

Then, we have m < n if and only if m+ ≤ n (second statement),

if and only if m+ < n+ (first statement but replacing m by m+).

(b) When p = 0, it’s trivial. Assume that for a particular p ∈ N, we have m < n if and only if

m + p < n + p for all m,n ∈ N.

Then, for all m,n ∈ N,

m < n ⇔ m + p < n + p (Induction assumption)

⇔ m + p+ = (m + p)+ < (n + p)+ = n + p+ (By (a))

By mathematical induction, we have m < n if and only if m + p < n + p for all m,n, p ∈ N.

8. When p = 1, it’s trivial.

Assume that for a particular p ∈ N, we have m < n if and only if mp < np for all m,n ∈ N.

Then, for all m,n ∈ N:

• if m < n, then by induction assumption, we have mp < np and so mp+ = mp + m < np + m.

On the other hand, we have m < n, so np + m = m + np < n + np = np + n = np+.

Therefore, we have mp+ < np+.

• if mp+ < np+, we are going to prove that m < n by contradiction.

Suppose the contrary and we have n ≤ m. Then, mp + m = mp+ < np+ = np + n ≤ np + m.

Therefore by the previous question, we have mp < np which implies m < n whcih is a

contradiction.

(Remark: From the previous question, the contrapositive of the statement in (a) gives m ≤ n

if and only if m+ ≤ n+. By using mathematical induction like (b), we have m ≤ n if and only

if m + p ≤ n + p for all m,n, p ∈ N.)

Therefore, m < n if and only if m + p+ ≤ n + p+ for all m,n ∈ N. By mathematical induction, we

have m < n if and only if mp < np for all m,n, p ∈ N.
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